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SOSe interestiae problems on traveling cracks under longitudinal shear 
were treated in I1 1 and 12 1. Fracture under longitudinal shear presents 
considerable interest because the mathematical description of this mode 
of cracking is considerably simpler than in the plane theory of elasti-. 

city. For fracture under longitudinal shear it is possible to obtain nse- 
ful exact solutions of many problems which are inaccessible for cracking 
in normal fracture and cracks under transverse shear, and thereby certain 

qualitative effects comuon to all types of fracture are clarified. More- 

over, in problems of longitudinal-shear cracks the accuracy of approxi- 

uate methods can be conveniently assessed. 

The general forrrulation of the problem of fracture under longitudinal 

shear is considered below. along with soue particolar static and dsnamic 
problems. 

1. General relations. 1. We assume that the elastic displace- 

ments in the body under consideration are such that 

where n, y are Cartesian coordinates, t is time, u, V, w are the compo- 

nents of the displacement vector along the axes x, y, z. In view of 
Hooke’s law, the components of the stress tensor are 

where p = E/2(1 + V) is the shear modulus, B Young’s modulus and v 
Poisson’s ratio. Substituting (1.1) into the equations of motion we oh- 
tain 
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where c is the speed of propagation of transverse waves, p is the 
density, and h is the Laplace operator. In particular, in the static 
problem (1.3) reduces to Laplace’s equation 

aw=o (1..4) 

‘lhe displacements (1.1) correspond to the case of the so-called “non- 
planar” deformation. Ry nonplanar deformation we mean that the state of 
stress in a cylindrical body of infinite height arises under the action 
of loads directed along the generators of the cylinder and constant 
along the generators. 

2, From (1.2) and (1.4) it follows that the stresses and displace- 
ments may be represented in terms of a single analytic function f(z) of 
the complex variable z = x + iy; we have 

w = Ref (z), z = z,, + iTUI = pf’ (2) (1.5) 

lbere is an obvious analogy between the problem of nonplanar deforma- 
tion in elasticity theory and the problem of plane hydrodynamics; the 
displacement ID corresponds to the velocity potential, and the stress 
vector r corresponds to the velocity vector. Ihis analogy enables one to 
mahe use of a number of relations of plane hydrodynamics in the theory 
of fracture. 

In particular, it can be said that for a body bounded by an outer 
contour cO and inner contours cl, . . . . c,,, the magnitude of the resultant 
force acting on an arbitrary arc AB is equal to 

R -pIm [f(%)--f(ZA)l 

In this case the analytic function f(z) can be represented in the 
form 

where Fk is the magnitude of the resultant force acting on the contour 

Ck* Bk is the intensity of the “screw dislocation” corresponding to the 
contour ck, i.e. the increment in displacement around the contour ck) 6 
denotes an analytic function, and ak is a point of the interior contour 

‘k* 

If the body is unbounded, then in the neighborhood of z = 00 the func- 
tion f(z) can be represented as follows: 

where 
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F= i F,, B= &lk, 
k=l k-1 

f, = $ (TAT - iQl;c) 

tc*l r (D being the stresses et infinity. 
x2’ yz 

For the most part we shall consider below the case in which disloca- 
tions are absent (BI = B = O), w XC corresponds in the hydrodynamic h’ h 
analogy to flow without circulation. 

3. using the correctness of the hypothesis that the end region of 
the crack is small and behaves independently, the authors have previous- 
ly shown [ 3 1 that at those points on the contour of a crack under longi- 
tudinal shear where the intensity of the cohesive force is a maximum, 
the stress r calculated without taking into account the cohesive 
force, goes [i’infinity according to the law 

A3 
$2 = 

nI/s (1.8) 

where s is the distance to a point on the contour, and M is a material 
constant, analogous to the cohesive modulus. 

2, ‘Ihe simplest problems of cracks under longitudinal 
shear. 1. Let an infinite body be in a state of nonplanar deformation 
with shearing stress roe = I eie of constant magn‘ etude at infinity. In 
the body there is a hole of-arbitrary shape but finite dimensions, the 
surface of which is traction-free. Such a problem corresponds to the 
problem in two-dimensional hydrodynamics of the flow of sn ideal fluid 
about a contour without circulation. According to well-known relations 

C51 we have in this case 

where g(r) is the function which maps conformally the exterior of the 
contour in the physical plane .z onto the exterior of the circle of 
radius R, such that g’(m) = 1. 

We consider as an example the case where the hole is a circle with 
one or two identical cracks (Fig. 1) perpendicular to the stress vector 

ra, at infinity, the direction of which we take to be the y-axis (8=~/2). 

In these cases the mapping functions g(z) are written in the re- 
spective forms 
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g(z) =;z+ J/+L2 (2.3) 

where 

z=z+;, L=;(r+l+-&) (2.4) 

The conditions determining the dimension 1 of the dynamically equi- 
librated crack have, in view of (l.S), (1.8), (2.1) to (2.4), the re- 
spective forms 

I(1 + q4 - I] (1 + Jy/z (2 + q-*/2 A--‘.‘2 = /..; (A=;) (2.5) 

-+(I + h) [I - (1 + q-4=& 
03 

(2.6) 

In particular, as X + 00 we obtain the asymptotic formulas 

(2.7) 

corresponding to an isolated crack of length 21 and a crack of length 1 
limited at one end in a uniform stress field (the analog of the Griffith 

crack). As X + 0 we obtain in 

which agrees with the formula 

Fig. 1. 

stress field 2r_, which 
near a circular hole. 

for half the length of a sym- 
metrical dynamically equilibrated 
crack in an infinite body in a 

corresponds to the maximum stress concentration 

is 
The dependence of the length A of the crack on the applied stress r,, 
presented in Fig. 2 as a curve of 

To = f(h) ( nr, Jf/; 
%=M’ A=$) 

Curves 1 and 2 were obtained from Formulas (2.5), (2.6) and the 
dashed curves 1' and 2' from the asymptotic formulas (2.7). 

The analogous problems for cracks in normal fracture were treated in 
an approximate manner by Bowie 16 I; the exact solutions of these prob- 
lems were not obtained, in view of the irrationality of the mapping 
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functions (2.21, (2.3). 

Fig. 2. Fig. 3. 

2. As an example of a mixed problem we consider the problem of an 
isolated straight line crack (- 2 Q x < 1)) on some portion of the sur- 

face of which C-b G x is;; b) a constant displacement to = f h is pre- 
scribed (the plus and minus signs denote the upper and lower faces of 
the crack), ‘Ihe remainder of the surface of the crack is traction-free. 
‘ihis problem for a normal fracture crack corresponds to the problem of 
splitting by a wedge of finite len$th, which was considered in I’? I. 
For the determination of the function f(z) we obtain, obviously, the 
following boundary value problem: 

We find 

I” (2) = (2.10) 
i 1/($ - P) (9 - b*) F 

where F(k, n/2) is the complete elliptic integral of the first kind+ 
From the condition (1.8) we obtain the relation 

(2.11) 

which determines the crack length 1. In particular, for b + DD we obtain 
the analog of the solution for a semi-infinite wedge 
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After transformation the relation (2.11) may be reduced to the form 

J$-=I[$ 

This relation is presented in Fig. 3. 

3. Some problems on the interaction of cracks in longi- 
tudinal shear. Problems of the interactions of cracks present con- 
siderable mathematical difficulty; for cracks under longitudinal shear, 
in contrast to normal fracture cracks and transverse shear cracks, it is 
possible to obtain useful exact solutions of many interaction problems. 
Typical problems concerning one-row cracks lattices are considered be- 

low. 

a b 

Fig. 4. 

1. First of all, suppose that in 
an infinite body under the action of 

uniform shear stresses r yz = r YT at 

infinity there is an infinite single 
row of identical cracks - 1 + 2nL < 
x< 2 + 2nL (n= O,fl,f2, *..f, 
y = 0 (Fig. da), perpendicular to 
the stress vector at infinity, the 
faces of the cracks being traction- 
free. 

We obtain the following boundary-value problem for the determination 
of the function f'(z): 

lim f’ (2) = - .E$TI ; Im f’ (2) = 0, - 1 + 2nL < 2 .< I + 2nL, 
Y-+W 

y==O 

(3.1) 
Ref' (z) = 0, I + 2nLQ z<--Z_tZ(nf1)L, y=o 

for the solution of which we find 

f’@) = -iz,,oc sin(nz/ 2L) 

IL vsins (m / ZL) - sin2 (nl / 2L) 
(3.2) 

From EIxpressions (3.2) and (1.8) we obtain the relation determining 
the dimension of the cracks for dynamic equilibrium 

l=Z M2 
n tan-‘- (3.3) 

2. We now treat the case where identical cracks form a one-row 
lattice - I~z~E,y=nL,n=O,fl,Jr2,...(Fig.~b)inaninfinite 
body which is subjected to uniform shear stress ryr = fry, tXz = 0 at 
infinity. 
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Solving the corresponding boundary-value problem, we obtain 

(3.4) 

From JSqressions (3.4) and (1.8) we obtain the relation determining 
the dimension 2 of the dynamically equilibrated cracks 

lhe dependence of r= on 1 is represented in Fig. 5 in the form of 
curves of 

2 =I(+-- iv* + 
1 

Curve 2 was drawn for an isolated crack, from Formula (2.7); curve 3 
was drawn for a system of colinear cracks, from Formula (3.3); curve i 

corresponds to a system of parallel cracks, 
according to Formula (3.5). Clearly, the V= 
interaction of cracks is considerably % 
different for various configurations. The 
presence of colinear cracks diminishes the 
strength of the body, decreasing the crack 
size for dyusmic equilibrium for a given 
load. ‘Ihe presence of parallel cracks, on 
the other hand, strengthens the body, in- 
creasing the crack size for dynamic equi- as 

librium for a given load. Moreover, for 
the parallel cracks there exists a limit- 
ing load equal to 

M u 0.8 1.6 
2* zzz - 

m 
(34 

Fig. 5. 

so that for T_, < t +* since there is no 
crack length, they cannot be in dynamic equilibrium. ‘lhe problem in 
classical elasticity theory of an infinite system of colinear cracks for 
the case of narmal fracture was treated by Westergaard [8 I and inde- 
pendently by Koiter [9 1. Koiter [lo I treated the problem of an in- 
finite system of parallel cracks in transverse shear by an approximate 
method. 

4: Curvilinear cracks in longitudinal shear. 1. We shall 

consider the region near the end of an arbitrary curvilinear crack (Fig. 
6) in longitudinal shear under the action of an arbitrary stress field 
which causes nonplanar deformation. lhe analysis of the stress field in 

the neighborhood of the point 0 shows that the stress T%= does not have 
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a singularity at this point, whereas the stress ry., has a singularity of 

Fig. 6. 

the type zSKISW so that the stress I 
B 

(Fig. 6) for small r is expressed in 
the form 

z: 28 = 

Here A, and A, are the real co- 
efficients of the first two terms of 
the expansion of f(t) about z = 0: 

We make the following hypothesis: The develop~~t of a curvilinear 
crack under longitudinal shear occurs along the direction in which rze 
is a maximum, 

From this hypothesis it follows that the direction tangent to the sur- 
face of a natural crack in longitudinal shear at its end must be the 
direction of the maximum stress r a. 

In view of (4.1), for this it is necessary snd sufficient that 

A2 = 0 (4.3) 
From (4.1) and (4.3) it follows that the distributions of stress and 

displacement near the point 0 are sylrmetric relative to the direction of 
the crack. ‘l&is property of syarnetry in the small enables one to make 
the hypothesis of the independence of the end region, in which the 
cohesive forces act; i.e. the hypothesis is that the shape of this 
region and the distribution of cohesive forces in it are independent of 
the load acting. Assuming the correctness of such a hypothesis regarding 
the smallness of the end region, we find that at the ends of a longi- 
tudinal shear crack, at which the cohesive forces have their maximum in- 
tensity, the stresses rrz, calculated without including the cohesive 
forces, approach infinity according to the law (1.81, whence 

let z = c&J be a function which maps the exterior of the contour D 
in the physical plane z = x + iy onto the upper half-plane, and F(l) = 

Fig. 7. where la is the image of the point z = 0. 
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2. We shall now consider some examples. For the first example we take 
a rectilinear crack which goes out at an angle no to a.free surface and 
is maintained by two oppositely directed concentrated forces P, and P, 
acting on different sides of the crack at the point where the crack 
leaves the free surface (Fig. 7). We have in this case 

Solving the boundary-value problem, we find that the expression for 
F’(5) in this case is 

F’ (5) = $ [* _:+ UC - pz UK--l) ] 
The conditions (4.3) and (4.4) give 

(4.8) 

(4.9) 

Thus the formulation of the problem applies only in the case when the 
ratio of the forces P, and P, is constant during the loading process, 
and consequently the growth of the crack occurs in a straight line only 
for proportional loading. 

Considerable interest attaches to the treatment of a somewhat differ- 
ent problem which is formulated in the following manner. Two symmetrical 
rectilinear cracks start from the traction-free boundary of a half-space 
and are held open by concentrated forces applied to the different sides 
of the cracks at the point where the cracks leave the free surface (Fig. 
8a). In this case we have 

Thus for proportional loading the cracks grow along straight lines. 
As is clear, a + 0 for P, + 0, so that the presence of forces P, differ- 

ent from zero and directed 
opposite to the main force 
P, is essential in order 
that straight line cracks 
propagate into the in- 
terior of the body. 

--qGj$$$5jQ -AL, 

The above problem for 
cracks under longitudinal 
shear will be the analog 

Fig. 8 

of the problem of conical cracks in normal fracture, which was treated 
by Roesler and Benbow [11,12 1 for the case of an axisymmetric punch 
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impressed on a brittle body. 'Ihe representation of the effect of the 
punch by a single concentrated force is insufficient for the correct de- 
scription of this phenomenon, and it is necessary to introduce opposite- 
ly directed concentrated forces (Fig. 8b); otherwise one will not obtain 
a nonzero included angle for the crack. 

3. The formulas given in Section 4.1 in principle enable one to in- 
vestigate the growth of arbitrary curvilinear cracks for an arbitrary 
loading process. However, generally speaking, these formulas are not 
convenient. lhe effective treatment of the growth of a curvilinear crack 
is possible for cracks which deviate but little from a straight line or 
circle, For simplicity the investigation will be restricted to cracks 
which differ only by a small amount from a straight line crack proceed- 
ing at a right angle from a free surface (Fig. 7). 

'lhe problem is set up in the following manner, Let both of the 
applied forces P, and P, depend on a loading parameter X so that 

Pl = P (h) + &PO (A), P2 = P (h) 

where c is a small number, On account of continuity it may be assumed 
that the polar coordinate E of the end of the crack and a differ but 
little from the undisturbed values of these coordinates. Applying the 
boundary conditions on the y-axis and using the solution of Section 4.2, 
we find 

(4.11) 

In particular, for P,, = RO(h - X,), where R is a constant, 8 the 
unit step function and X, some value of the parameter X, the coordi- 
nates of the end of the crack experience a jump as the parameter h 
passes through the value X,. 

In the case when 

P, = X sin (li. -h,) $ (h - h,), P = h, 

the crack, starting with a force equal to h,, oscillates about the y- 
axis in a curve, the amplitude of which increases without bound as the 
force P increases. 

5. The dynamic problem of shearing a body. The problem of 
shearing a body, analogous to the problem of splitting by a normal 
fracture crack, is formulated in the following manner. A straight line 
crack propagates with constant velocity V in an unbounded brittle body. 
'lhe opposite faces of the crack move in opposite directions parallel to 
the edge of the crack, so that there is a state of nonplanar deformation 
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(Fig. 9). If we introduce a moving system of coordinates e = z + Vt, 

q = y with origin at the end 0 of the 
crack, then because the process becomes 
a steady one in the moving coordinates, 
Equation (1.3) takes the form 

Fig. 9, 

expressions for the stresses 

z xz = @ecp (SL 

Exactly as in the problem 

The general solution of (5.1) has the 
form 

w = Recp (c), 5 = E + iqfl -G (5.2) 

where $<c) is an arbitrary analytic 
function, so that according to (1.2) the 

have the form 

Qz = - P I/ z&rl cp/ (5) (5.3) 

of splitting El3 1, the boundary conditions 
of the problem may be written in the form 

‘o\<E-sh %p=o, z<<<m, w= &f(E) (5.4) 

where f(S) is a given function determining the displacement, which is 
assumed to be nondecreasing and to approach a finite limit h as 4 + m; 
the plus and minus signs correspond to the upper and lower faces of the 
crack; 1 is the length of the free portion of the crack. 

Confining ourselves to the case V < c, we obtain the following bound- 
ary-value problem for the determination of the function #(<I in the 
lower half-plane: 

Re ‘p (5) = 0, E < 0; Im rp’ (5) = 0, 0 < g < 1 
Rev(C) = --f(E), i\<E < 00 

Using the formula of Keldysh and Sedov 114 1, we obtain 

(5.5) 

(5.6) 

where the branch of the function v/I< (5 - I) 1 is chosen so that 

v%x- 111 -Sf or I arge 4. Integrating (5.6) and using the limiting 
form of the conditions (5.5) for 6 + =, we obtain C = h. We find for the 
stress rqa at I] = 0 
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i 
l- 

p VI- v2/c2 h 

[ s xY’E - 
COI’(t)?4t--1)dt 

t-5 1 (ZGE<=) 
1 

Fran (5.7) and the condition (1.81, which may be used in the dynsmic 
problem as well, keeping in mind the possible dependence of the quantity 
M on the velocity Y, we obtain the equation for the determination of the 
free length E of the crack 

In the particular case where f(l) = h, we have 

(5.8) 

(5.9) 

As is clear from (5.91, for l~gitudinal shear cracks the limiting 
velocity of propagation is the velocity of sound c in contrast to cracks 
in normal fracture and transverse shear, for which the limiting velocity 
is the velocity of propagation of Bayleigh waves. 

‘Ihe authors are grateful to L.Ia. Semenov for carrying out the calcu- 

lations. 
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